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Abstract: If an FFAG can be made isochronous, acceleration
can occur without ramping the rf frequency. But this is of course
simply a cyclotron, of which many examples exist worldwide: 2
of the largest are PSI (580 MeV p, up to 1 MW beam power),
TRIUMF (500 MeV H−, up to 0.1 MW beam power). How do the
beam dynamics change if an FFAG is isochronous? E.g. can we
still achieve large acceptance?
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Isochronism
Let us define θ to be the angle of the reference particle
momentum w.r.t. the lab frame. Orbit length L is given by speed
and orbit period T :

L =

∮
ds =

∮
ρdθ = βcT.

The local curvature ρ = ρ(s) can vary and for reversed-field
bends even changes sign. (Along an orbit, ds = ρdθ > 0 so dθ
is also negative in reversed-field bends.) Of course on one orbit,
we always have ∮

dθ = 2π.

What is the magnetic field averaged over the orbit?

B =

∮
Bds∮
ds

=

∮
Bρdθ

βcT
.

But Bρ is constant and in fact is βγm0c/q. Therefore

B =
2π

T

m0

q
γ ≡ Bc γ =

Bc√
1− β2

.

Remember, β is related to the orbit length:
β = L/(cT ) = 2πR/(cT ) ≡ R/R∞. So

B =
Bc√

1− (R/R∞)2
.
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Of course, this means the field index is
k = R

B
dB
dR = β

γ
dγ
dβ = β2γ2 6= constant.

So isochronism⇒ non-scaling.
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Focusing (flat field)

For the moment, let us imagine that there are no sectors, no
azimuthal field variation, just radial variation with field index
k = β2γ2.

We know the transfer matrix in such a dipole, and can write
directly:

ν2
r = 1 + k ν2

z = −k
= 1 + β2γ2 = −β2γ2

= γ2 < 0

νr = γ νz = imaginary

So why do such cyclotrons work at all? Lawrence’s first
cyclotrons, and those built before the early 50s, had no sector
focusing. To obtain vertical focusing, k was made slightly
negative. This resulted in phase slippage, so the rf voltage was
made as large as possible to achieve the final energy before an
accumulated phase slip of π/2. In addition, some vertical
focusing was achieved by accelerating on the falling side of the
rf voltage. In this way, such cyclotrons achieved maximum
energies of 20 to 30 MeV (protons).

To reach higher energy, it was necessary to release
isochronism, ramp the rf frequency, and pulse the machine.
Unfortunately, this meant that the maximum intensity was 2 or 3
orders of magnitude lower than for the (cw) cyclotron.
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Focusing (AVF or FFAG, regular lattice)

Strong focusing was invented/developed in the 50s. This had
implications for

• cyclotrons : they could now be isochronous AND vertically
focusing

• synchro-cyclotrons : tunes need be no longer near 1, so
beams were smaller, space charge limits higher

• and synchrotrons : same advantages as for
synchro-cyclotrons

The application was by far simplest for synchrotrons. For FF
machines, the extended nature of the field was a calculational
headache. That is why synchrotrons developed rapidly in the
50s (when large computing power was unavailable), while
synchro-cyclotrons of the FFAG type did not. Nowadays, large
computing power is freely available.
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For Azimuthally-Varying Field (AVF) or the special case of
Alternating Gradient (FFAG), let us use Mathematica to
calculate the tunes. To make it transparent, let us consider all
identical dipoles and drifts; no reverse bends. We have drifts d,
dipoles with index k, radius ρ, bend angle φ, and edge angles
φ− θ:

θ

φφ−θ

R

ρ
d/2

sin(θ)

ρ
=

sin(φ)

R

d/2=R sin(φ−θ)

In addition, imagine that the edges are inclined by an extra
angle ξ. This is called the “spiral angle” (hard to draw).

In this hard-edged case, the “flutter”
F 2 ≡ 〈(B −B)2〉/B2

= R/ρ− 1.

Aside: Notice that the particle trajectory (blue curve) does not
coincide with a contour of constant B (dashed curves). This has
large implications for using existing transport codes to describe
FFAGs.
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s ������� ;� � ArcSin � R Sin � ;
f1 ��� Tan �	� �	
�� ;
f2 ��� Tan �	� � � � ;
d � 2 R � Sin �	� � ;

R ��� 1


F
2
;

k ������ R;
kx � Sqrt 1



k � ;

ky � Sqrt k � ;

Mz : �
Cosh ky s Sinh ky s ky

ky Sinh ky s Cosh ky s
.

1 0
� 1������� � �
f2

1 .
1 d
0 1

.
1 0

� 1������� � �
f1

1 .

Cosh ky s Sinh ky s ky
ky Sinh ky s Cosh ky s

�2
z
� FullSimplify
ArcCos Series

Mz 1, 1


Mz 2, 2 2,� , 0, 3 2 � ^2

���	� F2 1 � 2 Tan � 2 � O � 2

Mr : �
Cos kx s Sin kx s kx

� kx Sin kx s Cos kx s
.

1 0
1������� � �
f2

1 .
1 d
0 1

.
1 0
1������� � �
f1

1 .

Cos kx s Sin kx s kx
� kx Sin kx s Cos kx s

�2
r
� FullSimplify
ArcCos Series

Mr 1, 1


Mr 2, 2 2,� , 0, 3 2 � ^2

1 ��� � O � 2
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These expressions are identical to those originally derived by
Symon et al. in the original 1956 Phys. Rev. paper about FFAGs.

But beware! Since there is now a distinction between local
curvature (ρ) and global (R), the definition of field index is
ambiguous. The local index, used in the dipole transfer matrix,
is

k =
ρ

B

dB

dρ
,

while the Symon formula uses

κ =
R

B

dB

dR
≈ k

R

ρ

As we proved, it is in fact this latter quantity which must be
equal to β2γ2 for isochronism. We therefore still have

νr = γ (isochronous)

But

ν2
z = −β2γ2 + F 2

(
1 + 2 tan2 ξ

)
(isochronous)

Aside: We could have Mathematica print out the next higher
order, but it would be in error because the trajectories are not
circular arcs.
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Example: TRIUMF cyclotron

Energy R βγ ξ 1 + 2 tan2 ξ F 2 νz
100 MeV 175 in. 0.47 0◦ 0.0 0.30 0.28
250 MeV 251 in. 0.78 47◦ 3.3 0.20 0.24
505 MeV 311 in. 1.17 72◦ 20.0 0.07 0.24
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Irregular FFAG cyclotrons

By adjusting the flutter F and spiral angle ξ as functions of R,
we can arrange to make νz constant.

But what about νr? Can we change it by departing from the
regular N -cell lattice? Perhaps, but no one has ever tried it.

In synchrotron language, isochronism means γ = γt. But we
know that for a “regular” lattice, γt = νr. Hence, νr = γ. For an
irregular lattice,

1

γ2
t

=
ν3
r

R

∑
n

|an|2

ν2
r − n2

where an is the Fourier transform of β3/2
x /ρ. For N identical

cells where N � νr, this gives γt = νr because the n = 0 term
gives by far the largest contribution to the sum.

If the lattice is arranged to have a superperiodicity n = ±S
where S ∼ νr, γt can be moved away from νr:

1

γ2
t

=
1

ν2
r

+
2|aS|2

R

ν3
r

ν2
r − S2

This is the approach used to make γt imaginary in e.g. the JHF
main ring. Whether this can be used to fix νr in a cyclotron
where necessarily γt = γ, is not clear, since it prescribes a
peculiar variation of aS with R.

10



Conclusions:

The chief virtue that FFAG scaling machines have
over non-scaling isochronous machines is the
constancy of the tunes. This results in huge
acceptance (> 1000πmm-mrad). But because they
cannot be isochronous, they must be pulsed.

The chief virtue of isochronous FFAGs is that they
can run cw and reach very high intensity. However,
because νr = γ, many resonances must be
traversed to reach high energy. This reduces
acceptance to only a few πmm-mrad.
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